A Bidirectional Flow Joint Sobolev Gradient for Image Interpolation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Bidirectional Flow for Image Interpolation and Enhancement

Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually the effects of blurred edges and jagged artifacts in the image to some extent. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to sharpen edges along the normal directions to the isophote lines...

متن کامل

Feature Preserving Image Interpolation and Enhancement Using Adaptive Bidirectional Flow

Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually to some extent the effects of blurred edges and jagged artifacts in the image. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to enhance edges along the normal directions to the isophote lines...

متن کامل

Image Segmentation with a Sobolev Gradient Method

The most effective methods for finding object boundaries in a digital image involve minimizing a functional over a set of curves or surfaces, where the functional includes internal energy terms for regularization and external energy terms that allign the curves or surfaces with object boundaries. Current practice is to seek critical points of the energy functional by what amounts to a steepest ...

متن کامل

A Comparison Principle for a Sobolev Gradient Semi-flow

We consider gradient descent equations for energy functionals of the type S(u) = 1 2 〈u(x), A(x)u(x)〉L2 + ∫ Ω V (x, u) dx, where A is a uniformly elliptic operator of order 2, with smooth coefficients. The gradient descent equation for such a functional depends on the metric under consideration. We consider the steepest descent equation for S where the gradient is an element of the Sobolev spac...

متن کامل

Image Sharpening via Sobolev Gradient Flows

Motivated by some recent work in active contour applications, we study the use of Sobolev gradients for PDE-based image diffusion and sharpening. We begin by studying, for the case of isotropic diffusion, the gradient descent/ascent equation obtained by modifying the usual metric on the space of images, which is the L metric, to a Sobolev metric. We present existence and uniqueness results for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2013

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2013/571052